Wiktionary edits (lv)
This is the bipartite edit network of the Latvian Wiktionary. It contains users
and pages from the Latvian Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 14,166
|
Left size | n1 = | 330
|
Right size | n2 = | 13,836
|
Volume | m = | 79,460
|
Unique edge count | m̿ = | 47,893
|
Wedge count | s = | 97,394,815
|
Claw count | z = | 184,543,133,919
|
Cross count | x = | 291,688,790,115,646
|
Square count | q = | 84,804,534
|
4-Tour count | T4 = | 1,068,111,626
|
Maximum degree | dmax = | 16,727
|
Maximum left degree | d1max = | 16,727
|
Maximum right degree | d2max = | 72
|
Average degree | d = | 11.218 4
|
Average left degree | d1 = | 240.788
|
Average right degree | d2 = | 5.742 99
|
Fill | p = | 0.010 489 3
|
Average edge multiplicity | m̃ = | 1.659 12
|
Size of LCC | N = | 13,766
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.020 16
|
90-Percentile effective diameter | δ0.9 = | 5.209 04
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.417 80
|
Gini coefficient | G = | 0.742 339
|
Balanced inequality ratio | P = | 0.219 979
|
Left balanced inequality ratio | P1 = | 0.054 757 1
|
Right balanced inequality ratio | P2 = | 0.311 024
|
Relative edge distribution entropy | Her = | 0.712 494
|
Power law exponent | γ = | 2.023 10
|
Tail power law exponent | γt = | 3.391 00
|
Tail power law exponent with p | γ3 = | 3.391 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.531 00
|
Left p-value | p1 = | 0.001 000 00
|
Right tail power law exponent with p | γ3,2 = | 8.741 00
|
Right p-value | p2 = | 0.816 000
|
Degree assortativity | ρ = | −0.177 973
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 338.447
|
Algebraic connectivity | a = | 0.007 636 22
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.769 90
|
Controllability | C = | 13,361
|
Relative controllability | Cr = | 0.954 153
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|