Wikibooks edits (mk)
This is the bipartite edit network of the Macedonian Wikibooks. It contains
users and pages from the Macedonian Wikibooks, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,155
|
Left size | n1 = | 233
|
Right size | n2 = | 1,922
|
Volume | m = | 3,748
|
Unique edge count | m̿ = | 2,373
|
Wedge count | s = | 261,641
|
Claw count | z = | 36,005,617
|
Cross count | x = | 4,531,369,330
|
Square count | q = | 15,826
|
4-Tour count | T4 = | 1,178,002
|
Maximum degree | dmax = | 1,087
|
Maximum left degree | d1max = | 1,087
|
Maximum right degree | d2max = | 73
|
Average degree | d = | 3.478 42
|
Average left degree | d1 = | 16.085 8
|
Average right degree | d2 = | 1.950 05
|
Fill | p = | 0.005 298 93
|
Average edge multiplicity | m̃ = | 1.579 44
|
Size of LCC | N = | 1,742
|
Diameter | δ = | 17
|
50-Percentile effective diameter | δ0.5 = | 3.727 22
|
90-Percentile effective diameter | δ0.9 = | 7.355 73
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.728 23
|
Gini coefficient | G = | 0.668 289
|
Balanced inequality ratio | P = | 0.245 998
|
Left balanced inequality ratio | P1 = | 0.126 734
|
Right balanced inequality ratio | P2 = | 0.354 322
|
Relative edge distribution entropy | Her = | 0.794 065
|
Power law exponent | γ = | 4.780 34
|
Tail power law exponent | γt = | 2.571 00
|
Tail power law exponent with p | γ3 = | 2.571 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.811 00
|
Left p-value | p1 = | 0.068 000 0
|
Right tail power law exponent with p | γ3,2 = | 4.931 00
|
Right p-value | p2 = | 0.004 000 00
|
Degree assortativity | ρ = | −0.172 760
|
Degree assortativity p-value | pρ = | 2.349 02 × 10−17
|
Spectral norm | α = | 101.686
|
Algebraic connectivity | a = | 0.007 582 34
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.559 79
|
Controllability | C = | 1,598
|
Relative controllability | Cr = | 0.789 526
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|