Wikiquote edits (mk)
This is the bipartite edit network of the Macedonian Wikisource. It contains
users and pages from the Macedonian Wikisource, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 6,891
|
Left size | n1 = | 218
|
Right size | n2 = | 6,673
|
Volume | m = | 13,801
|
Unique edge count | m̿ = | 7,728
|
Wedge count | s = | 15,507,218
|
Claw count | z = | 28,395,754,686
|
Cross count | x = | 39,320,534,682,446
|
Square count | q = | 53,705
|
4-Tour count | T4 = | 62,497,196
|
Maximum degree | dmax = | 9,224
|
Maximum left degree | d1max = | 9,224
|
Maximum right degree | d2max = | 1,349
|
Average degree | d = | 4.005 51
|
Average left degree | d1 = | 63.307 3
|
Average right degree | d2 = | 2.068 19
|
Fill | p = | 0.005 312 38
|
Average edge multiplicity | m̃ = | 1.785 84
|
Size of LCC | N = | 6,379
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 1.625 98
|
90-Percentile effective diameter | δ0.9 = | 3.520 73
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.423 79
|
Gini coefficient | G = | 0.715 110
|
Balanced inequality ratio | P = | 0.222 194
|
Left balanced inequality ratio | P1 = | 0.063 836 0
|
Right balanced inequality ratio | P2 = | 0.331 643
|
Relative edge distribution entropy | Her = | 0.664 598
|
Power law exponent | γ = | 8.821 98
|
Tail power law exponent | γt = | 3.251 00
|
Tail power law exponent with p | γ3 = | 3.251 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.711 00
|
Left p-value | p1 = | 0.741 000
|
Right tail power law exponent with p | γ3,2 = | 3.491 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.369 768
|
Degree assortativity p-value | pρ = | 5.338 14 × 10−249
|
Spectral norm | α = | 1,344.84
|
Algebraic connectivity | a = | 0.007 606 24
|
Spectral separation | |λ1[A] / λ2[A]| = | 6.453 13
|
Controllability | C = | 6,427
|
Relative controllability | Cr = | 0.937 837
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|