Wiktionary edits (mk)
This is the bipartite edit network of the Macedonian Wiktionary. It contains
users and pages from the Macedonian Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 6,388
|
Left size | n1 = | 239
|
Right size | n2 = | 6,149
|
Volume | m = | 40,267
|
Unique edge count | m̿ = | 23,179
|
Wedge count | s = | 22,342,139
|
Claw count | z = | 18,367,312,387
|
Cross count | x = | 12,346,781,829,681
|
Square count | q = | 33,307,735
|
4-Tour count | T4 = | 355,878,914
|
Maximum degree | dmax = | 7,263
|
Maximum left degree | d1max = | 7,263
|
Maximum right degree | d2max = | 139
|
Average degree | d = | 12.607 1
|
Average left degree | d1 = | 168.481
|
Average right degree | d2 = | 6.548 54
|
Fill | p = | 0.015 772 2
|
Average edge multiplicity | m̃ = | 1.737 22
|
Size of LCC | N = | 6,054
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.022 42
|
90-Percentile effective diameter | δ0.9 = | 3.884 40
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.125 81
|
Gini coefficient | G = | 0.731 561
|
Balanced inequality ratio | P = | 0.234 808
|
Left balanced inequality ratio | P1 = | 0.059 800 8
|
Right balanced inequality ratio | P2 = | 0.323 193
|
Relative edge distribution entropy | Her = | 0.724 852
|
Power law exponent | γ = | 1.985 89
|
Tail power law exponent | γt = | 4.501 00
|
Tail power law exponent with p | γ3 = | 4.501 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.581 00
|
Left p-value | p1 = | 0.002 000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.008 000 00
|
Degree assortativity | ρ = | +0.111 491
|
Degree assortativity p-value | pρ = | 5.237 83 × 10−65
|
Spectral norm | α = | 244.344
|
Algebraic connectivity | a = | 0.030 125 6
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.914 03
|
Controllability | C = | 5,841
|
Relative controllability | Cr = | 0.926 408
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|