Wikiquote edits (mr)
This is the bipartite edit network of the Marathi Wikisource. It contains users
and pages from the Marathi Wikisource, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 7,274
|
Left size | n1 = | 687
|
Right size | n2 = | 6,587
|
Volume | m = | 14,859
|
Unique edge count | m̿ = | 8,817
|
Wedge count | s = | 2,719,308
|
Claw count | z = | 995,352,177
|
Cross count | x = | 318,092,812,541
|
Square count | q = | 36,313
|
4-Tour count | T4 = | 11,188,054
|
Maximum degree | dmax = | 1,835
|
Maximum left degree | d1max = | 1,835
|
Maximum right degree | d2max = | 246
|
Average degree | d = | 4.085 51
|
Average left degree | d1 = | 21.628 8
|
Average right degree | d2 = | 2.255 81
|
Fill | p = | 0.001 948 39
|
Average edge multiplicity | m̃ = | 1.685 27
|
Size of LCC | N = | 6,383
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 5.157 26
|
90-Percentile effective diameter | δ0.9 = | 6.171 84
|
Median distance | δM = | 6
|
Mean distance | δm = | 5.151 45
|
Gini coefficient | G = | 0.743 524
|
Balanced inequality ratio | P = | 0.191 736
|
Left balanced inequality ratio | P1 = | 0.117 168
|
Right balanced inequality ratio | P2 = | 0.303 924
|
Relative edge distribution entropy | Her = | 0.764 627
|
Power law exponent | γ = | 6.627 97
|
Tail power law exponent | γt = | 2.931 00
|
Tail power law exponent with p | γ3 = | 2.931 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.721 00
|
Left p-value | p1 = | 0.590 000
|
Right tail power law exponent with p | γ3,2 = | 2.591 00
|
Right p-value | p2 = | 0.210 000
|
Degree assortativity | ρ = | −0.311 847
|
Degree assortativity p-value | pρ = | 3.999 00 × 10−198
|
Spectral norm | α = | 206.197
|
Algebraic connectivity | a = | 0.000 801 333
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.398 47
|
Controllability | C = | 6,570
|
Relative controllability | Cr = | 0.908 337
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|