Wikipedia edits (mt)
This is the bipartite edit network of the Maltese Wikipedia. It contains users
and pages from the Maltese Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 16,594
|
Left size | n1 = | 1,746
|
Right size | n2 = | 14,848
|
Volume | m = | 190,769
|
Unique edge count | m̿ = | 66,256
|
Wedge count | s = | 67,967,670
|
Claw count | z = | 91,250,780,048
|
Cross count | x = | 126,057,812,173,885
|
Square count | q = | 104,630,141
|
4-Tour count | T4 = | 1,109,063,848
|
Maximum degree | dmax = | 22,886
|
Maximum left degree | d1max = | 22,886
|
Maximum right degree | d2max = | 1,031
|
Average degree | d = | 22.992 5
|
Average left degree | d1 = | 109.261
|
Average right degree | d2 = | 12.848 1
|
Fill | p = | 0.002 555 72
|
Average edge multiplicity | m̃ = | 2.879 27
|
Size of LCC | N = | 15,753
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.257 97
|
90-Percentile effective diameter | δ0.9 = | 4.020 73
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.526 54
|
Gini coefficient | G = | 0.855 305
|
Balanced inequality ratio | P = | 0.150 905
|
Left balanced inequality ratio | P1 = | 0.049 148 4
|
Right balanced inequality ratio | P2 = | 0.194 691
|
Relative edge distribution entropy | Her = | 0.751 747
|
Power law exponent | γ = | 2.177 22
|
Tail power law exponent | γt = | 1.761 00
|
Tail power law exponent with p | γ3 = | 1.761 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.771 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 6.471 00
|
Right p-value | p2 = | 0.734 000
|
Degree assortativity | ρ = | −0.313 500
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,181.14
|
Algebraic connectivity | a = | 0.047 299 4
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.030 11
|
Controllability | C = | 13,318
|
Relative controllability | Cr = | 0.814 357
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|