Wiktionary edits (mt)
This is the bipartite edit network of the Maltese Wiktionary. It contains users
and pages from the Maltese Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,853
|
Left size | n1 = | 193
|
Right size | n2 = | 2,660
|
Volume | m = | 13,844
|
Unique edge count | m̿ = | 7,506
|
Wedge count | s = | 3,690,261
|
Claw count | z = | 1,662,532,110
|
Cross count | x = | 612,020,860,268
|
Square count | q = | 2,521,539
|
4-Tour count | T4 = | 34,950,152
|
Maximum degree | dmax = | 4,137
|
Maximum left degree | d1max = | 4,137
|
Maximum right degree | d2max = | 83
|
Average degree | d = | 9.704 87
|
Average left degree | d1 = | 71.730 6
|
Average right degree | d2 = | 5.204 51
|
Fill | p = | 0.014 620 7
|
Average edge multiplicity | m̃ = | 1.844 39
|
Size of LCC | N = | 2,630
|
Diameter | δ = | 17
|
50-Percentile effective diameter | δ0.5 = | 1.869 54
|
90-Percentile effective diameter | δ0.9 = | 5.897 12
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.555 31
|
Gini coefficient | G = | 0.718 034
|
Balanced inequality ratio | P = | 0.232 628
|
Left balanced inequality ratio | P1 = | 0.067 755 0
|
Right balanced inequality ratio | P2 = | 0.333 285
|
Relative edge distribution entropy | Her = | 0.734 386
|
Power law exponent | γ = | 2.163 77
|
Tail power law exponent | γt = | 3.671 00
|
Tail power law exponent with p | γ3 = | 3.671 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.661 00
|
Left p-value | p1 = | 0.006 000 00
|
Right tail power law exponent with p | γ3,2 = | 4.561 00
|
Right p-value | p2 = | 0.003 000 00
|
Degree assortativity | ρ = | −0.175 106
|
Degree assortativity p-value | pρ = | 9.418 36 × 10−53
|
Spectral norm | α = | 169.760
|
Algebraic connectivity | a = | 0.004 937 95
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.198 21
|
Controllability | C = | 2,468
|
Relative controllability | Cr = | 0.865 965
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|