Wikipedia edits (olo)
This is the bipartite edit network of the Livvi-Karelian Wikipedia. It contains
users and pages from the Livvi-Karelian Wikipedia, connected by edit events.
Each edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 3,281
|
Left size | n1 = | 140
|
Right size | n2 = | 3,141
|
Volume | m = | 16,801
|
Unique edge count | m̿ = | 10,469
|
Wedge count | s = | 6,258,310
|
Claw count | z = | 3,411,695,053
|
Cross count | x = | 1,532,829,171,033
|
Square count | q = | 4,199,399
|
4-Tour count | T4 = | 58,649,490
|
Maximum degree | dmax = | 3,288
|
Maximum left degree | d1max = | 3,288
|
Maximum right degree | d2max = | 104
|
Average degree | d = | 10.241 4
|
Average left degree | d1 = | 120.007
|
Average right degree | d2 = | 5.348 93
|
Fill | p = | 0.023 807 2
|
Average edge multiplicity | m̃ = | 1.604 83
|
Size of LCC | N = | 3,238
|
Diameter | δ = | 8
|
50-Percentile effective diameter | δ0.5 = | 1.723 12
|
90-Percentile effective diameter | δ0.9 = | 3.657 33
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.593 44
|
Gini coefficient | G = | 0.703 310
|
Balanced inequality ratio | P = | 0.237 873
|
Left balanced inequality ratio | P1 = | 0.106 660
|
Right balanced inequality ratio | P2 = | 0.344 325
|
Relative edge distribution entropy | Her = | 0.739 091
|
Power law exponent | γ = | 1.936 40
|
Tail power law exponent | γt = | 3.631 00
|
Tail power law exponent with p | γ3 = | 3.631 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.471 00
|
Left p-value | p1 = | 0.874 000
|
Right tail power law exponent with p | γ3,2 = | 6.081 00
|
Right p-value | p2 = | 0.465 000
|
Degree assortativity | ρ = | −0.204 446
|
Degree assortativity p-value | pρ = | 3.433 67 × 10−99
|
Spectral norm | α = | 155.554
|
Algebraic connectivity | a = | 0.241 425
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.284 80
|
Controllability | C = | 3,005
|
Relative controllability | Cr = | 0.920 368
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|