Wiktionary edits (pa)
This is the bipartite edit network of the Punjabi Wiktionary. It contains users
and pages from the Punjabi Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 4,647
|
Left size | n1 = | 219
|
Right size | n2 = | 4,428
|
Volume | m = | 12,370
|
Unique edge count | m̿ = | 8,640
|
Wedge count | s = | 5,066,005
|
Claw count | z = | 2,846,889,902
|
Cross count | x = | 1,268,110,930,832
|
Square count | q = | 1,590,179
|
4-Tour count | T4 = | 33,003,040
|
Maximum degree | dmax = | 2,530
|
Maximum left degree | d1max = | 2,530
|
Maximum right degree | d2max = | 92
|
Average degree | d = | 5.323 86
|
Average left degree | d1 = | 56.484 0
|
Average right degree | d2 = | 2.793 59
|
Fill | p = | 0.008 909 68
|
Average edge multiplicity | m̃ = | 1.431 71
|
Size of LCC | N = | 4,422
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.311 62
|
90-Percentile effective diameter | δ0.9 = | 5.316 64
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.645 51
|
Gini coefficient | G = | 0.716 053
|
Balanced inequality ratio | P = | 0.229 588
|
Left balanced inequality ratio | P1 = | 0.087 146 3
|
Right balanced inequality ratio | P2 = | 0.331 609
|
Relative edge distribution entropy | Her = | 0.727 785
|
Power law exponent | γ = | 2.901 60
|
Tail power law exponent | γt = | 2.841 00
|
Tail power law exponent with p | γ3 = | 2.841 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.611 00
|
Left p-value | p1 = | 0.369 000
|
Right tail power law exponent with p | γ3,2 = | 8.561 00
|
Right p-value | p2 = | 0.828 000
|
Degree assortativity | ρ = | −0.351 800
|
Degree assortativity p-value | pρ = | 3.714 00 × 10−250
|
Spectral norm | α = | 113.649
|
Algebraic connectivity | a = | 0.010 700 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.141 12
|
Controllability | C = | 4,212
|
Relative controllability | Cr = | 0.907 368
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|