Wikinews edits (pt)
This is the bipartite edit network of the Portuguese Wikinews. It contains
users and pages from the Portuguese Wikinews, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 42,449
|
Left size | n1 = | 2,149
|
Right size | n2 = | 40,300
|
Volume | m = | 247,874
|
Unique edge count | m̿ = | 97,313
|
Wedge count | s = | 186,152,917
|
Claw count | z = | 434,810,437,672
|
Cross count | x = | 984,082,071,481,929
|
Square count | q = | 40,242,460
|
4-Tour count | T4 = | 1,066,749,158
|
Maximum degree | dmax = | 65,524
|
Maximum left degree | d1max = | 65,524
|
Maximum right degree | d2max = | 63,650
|
Average degree | d = | 11.678 7
|
Average left degree | d1 = | 115.344
|
Average right degree | d2 = | 6.150 72
|
Fill | p = | 0.001 123 65
|
Average edge multiplicity | m̃ = | 2.547 18
|
Size of LCC | N = | 41,024
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.440 57
|
90-Percentile effective diameter | δ0.9 = | 4.203 56
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.788 66
|
Gini coefficient | G = | 0.812 939
|
Balanced inequality ratio | P = | 0.178 581
|
Left balanced inequality ratio | P1 = | 0.041 440 4
|
Right balanced inequality ratio | P2 = | 0.265 671
|
Relative edge distribution entropy | Her = | 0.741 280
|
Power law exponent | γ = | 2.459 94
|
Tail power law exponent | γt = | 3.291 00
|
Tail power law exponent with p | γ3 = | 3.291 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.801 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 3.811 00
|
Right p-value | p2 = | 0.056 000 0
|
Degree assortativity | ρ = | −0.177 779
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 63,607.7
|
Algebraic connectivity | a = | 0.051 412 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 57.943 6
|
Controllability | C = | 38,573
|
Relative controllability | Cr = | 0.915 853
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|