Wikiquote edits (pt)
This is the bipartite edit network of the Portuguese Wikiquote. It contains
users and pages from the Portuguese Wikiquote, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 30,579
|
Left size | n1 = | 2,920
|
Right size | n2 = | 27,659
|
Volume | m = | 124,568
|
Unique edge count | m̿ = | 73,968
|
Wedge count | s = | 208,395,027
|
Claw count | z = | 1,066,040,037,854
|
Cross count | x = | 4,764,955,486,590,235
|
Square count | q = | 46,380,687
|
4-Tour count | T4 = | 1,204,865,500
|
Maximum degree | dmax = | 38,810
|
Maximum left degree | d1max = | 38,810
|
Maximum right degree | d2max = | 564
|
Average degree | d = | 8.147 29
|
Average left degree | d1 = | 42.660 3
|
Average right degree | d2 = | 4.503 71
|
Fill | p = | 0.000 915 850
|
Average edge multiplicity | m̃ = | 1.684 08
|
Size of LCC | N = | 29,664
|
Diameter | δ = | 10
|
50-Percentile effective diameter | δ0.5 = | 1.996 74
|
90-Percentile effective diameter | δ0.9 = | 3.813 65
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.891 45
|
Gini coefficient | G = | 0.802 457
|
Balanced inequality ratio | P = | 0.172 360
|
Left balanced inequality ratio | P1 = | 0.078 800 3
|
Right balanced inequality ratio | P2 = | 0.248 242
|
Relative edge distribution entropy | Her = | 0.738 054
|
Power law exponent | γ = | 2.640 46
|
Tail power law exponent | γt = | 2.331 00
|
Tail power law exponent with p | γ3 = | 2.331 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.851 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.621 00
|
Right p-value | p2 = | 0.904 000
|
Degree assortativity | ρ = | −0.247 713
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 730.736
|
Algebraic connectivity | a = | 0.046 788 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.278 29
|
Controllability | C = | 25,496
|
Relative controllability | Cr = | 0.842 230
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|