Wikipedia edits (roa-tara)

This is the bipartite edit network of the tarandíne Wikipedia. It contains users and pages from the tarandíne Wikipedia, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.


Internal nameedit-roa_tarawiki
NameWikipedia edits (roa-tara)
Data source
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps


Size n =18,036
Left size n1 =866
Right size n2 =17,170
Volume m =126,492
Unique edge count m̿ =75,855
Wedge count s =175,777,552
Claw count z =479,237,908,968
Cross count x =1,174,353,853,204,264
Square count q =190,319,729
4-Tour count T4 =2,225,886,066
Maximum degree dmax =24,271
Maximum left degree d1max =24,271
Maximum right degree d2max =282
Average degree d =14.026 6
Average left degree d1 =146.065
Average right degree d2 =7.367 04
Fill p =0.005 101 48
Average edge multiplicity m̃ =1.667 55
Size of LCC N =17,463
Diameter δ =11
50-Percentile effective diameter δ0.5 =1.741 00
90-Percentile effective diameter δ0.9 =3.697 89
Median distance δM =2
Mean distance δm =2.639 37
Gini coefficient G =0.807 557
Balanced inequality ratio P =0.182 964
Left balanced inequality ratio P1 =0.059 181 6
Right balanced inequality ratio P2 =0.245 597
Relative edge distribution entropy Her =0.725 413
Power law exponent γ =2.022 73
Tail power law exponent γt =3.241 00
Tail power law exponent with p γ3 =3.241 00
p-value p =0.000 00
Left tail power law exponent with p γ3,1 =1.621 00
Left p-value p1 =0.000 00
Right tail power law exponent with p γ3,2 =4.871 00
Right p-value p2 =0.038 000 0
Degree assortativity ρ =−0.483 502
Degree assortativity p-value pρ =0.000 00
Spectral norm α =639.348
Algebraic connectivity a =0.029 331 2
Spectral separation 1[A] / λ2[A]| =1.778 79
Controllability C =16,254
Relative controllability Cr =0.907 740


Fruchterman–Reingold graph drawing

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the adjacency matrix

Spectral graph drawing based on the Laplacian

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Edge weight/multiplicity distribution

Temporal distribution

Temporal hop distribution

Diameter/density evolution

Matrix decompositions plots



[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads., January 2010.