Wikibooks edits (ru)
This is the bipartite edit network of the Russian Wikibooks. It contains users
and pages from the Russian Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 16,447
|
Left size | n1 = | 3,286
|
Right size | n2 = | 13,161
|
Volume | m = | 88,077
|
Unique edge count | m̿ = | 28,943
|
Wedge count | s = | 11,344,088
|
Claw count | z = | 7,260,811,567
|
Cross count | x = | 3,963,711,819,520
|
Square count | q = | 3,113,891
|
4-Tour count | T4 = | 70,354,846
|
Maximum degree | dmax = | 6,195
|
Maximum left degree | d1max = | 6,195
|
Maximum right degree | d2max = | 1,906
|
Average degree | d = | 10.710 4
|
Average left degree | d1 = | 26.803 7
|
Average right degree | d2 = | 6.692 27
|
Fill | p = | 0.000 669 248
|
Average edge multiplicity | m̃ = | 3.043 12
|
Size of LCC | N = | 15,235
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.700 06
|
90-Percentile effective diameter | δ0.9 = | 5.335 77
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.276 12
|
Gini coefficient | G = | 0.804 787
|
Balanced inequality ratio | P = | 0.168 966
|
Left balanced inequality ratio | P1 = | 0.116 171
|
Right balanced inequality ratio | P2 = | 0.222 601
|
Relative edge distribution entropy | Her = | 0.815 630
|
Power law exponent | γ = | 2.825 34
|
Tail power law exponent | γt = | 2.371 00
|
Tail power law exponent with p | γ3 = | 2.371 00
|
p-value | p = | 0.007 000 00
|
Left tail power law exponent with p | γ3,1 = | 1.881 00
|
Left p-value | p1 = | 0.631 000
|
Right tail power law exponent with p | γ3,2 = | 2.861 00
|
Right p-value | p2 = | 0.741 000
|
Degree assortativity | ρ = | −0.188 324
|
Degree assortativity p-value | pρ = | 2.906 24 × 10−229
|
Spectral norm | α = | 1,431.56
|
Algebraic connectivity | a = | 0.043 727 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.388 72
|
Controllability | C = | 11,756
|
Relative controllability | Cr = | 0.723 847
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|