Wikiquote edits (ru)
This is the bipartite edit network of the Russian Wikiquote. It contains users
and pages from the Russian Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 37,740
|
Left size | n1 = | 5,538
|
Right size | n2 = | 32,202
|
Volume | m = | 204,682
|
Unique edge count | m̿ = | 102,731
|
Wedge count | s = | 125,401,935
|
Claw count | z = | 307,366,586,878
|
Cross count | x = | 787,494,997,710,083
|
Square count | q = | 43,862,281
|
4-Tour count | T4 = | 852,826,158
|
Maximum degree | dmax = | 18,852
|
Maximum left degree | d1max = | 18,852
|
Maximum right degree | d2max = | 1,671
|
Average degree | d = | 10.847 0
|
Average left degree | d1 = | 36.959 6
|
Average right degree | d2 = | 6.356 19
|
Fill | p = | 0.000 576 057
|
Average edge multiplicity | m̃ = | 1.992 41
|
Size of LCC | N = | 36,744
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.412 68
|
90-Percentile effective diameter | δ0.9 = | 4.514 66
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.798 25
|
Gini coefficient | G = | 0.813 457
|
Balanced inequality ratio | P = | 0.171 867
|
Left balanced inequality ratio | P1 = | 0.086 856 7
|
Right balanced inequality ratio | P2 = | 0.231 359
|
Relative edge distribution entropy | Her = | 0.775 179
|
Power law exponent | γ = | 2.467 59
|
Tail power law exponent | γt = | 2.491 00
|
Tail power law exponent with p | γ3 = | 2.491 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.871 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.021 00
|
Right p-value | p2 = | 0.088 000 0
|
Degree assortativity | ρ = | −0.156 588
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 554.777
|
Algebraic connectivity | a = | 0.043 789 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.004 86
|
Controllability | C = | 29,148
|
Relative controllability | Cr = | 0.779 546
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|