Wikivoyage edits (ru)
This is the bipartite edit network of the Russian Wikivoyage. It contains users
and pages from the Russian Wikivoyage, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 16,613
|
Left size | n1 = | 2,162
|
Right size | n2 = | 14,451
|
Volume | m = | 194,277
|
Unique edge count | m̿ = | 46,984
|
Wedge count | s = | 51,084,433
|
Claw count | z = | 68,537,993,047
|
Cross count | x = | 82,515,480,116,683
|
Square count | q = | 35,113,998
|
4-Tour count | T4 = | 485,368,568
|
Maximum degree | dmax = | 25,930
|
Maximum left degree | d1max = | 25,930
|
Maximum right degree | d2max = | 5,743
|
Average degree | d = | 23.388 6
|
Average left degree | d1 = | 89.859 9
|
Average right degree | d2 = | 13.443 8
|
Fill | p = | 0.001 503 82
|
Average edge multiplicity | m̃ = | 4.134 96
|
Size of LCC | N = | 16,332
|
Diameter | δ = | 10
|
50-Percentile effective diameter | δ0.5 = | 3.204 36
|
90-Percentile effective diameter | δ0.9 = | 4.499 03
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.540 44
|
Gini coefficient | G = | 0.863 310
|
Balanced inequality ratio | P = | 0.141 514
|
Left balanced inequality ratio | P1 = | 0.069 014 9
|
Right balanced inequality ratio | P2 = | 0.189 220
|
Relative edge distribution entropy | Her = | 0.745 936
|
Power law exponent | γ = | 2.503 36
|
Tail power law exponent | γt = | 1.901 00
|
Tail power law exponent with p | γ3 = | 1.901 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.861 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.441 00
|
Right p-value | p2 = | 0.884 000
|
Degree assortativity | ρ = | −0.275 079
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 2,549.89
|
Algebraic connectivity | a = | 0.036 361 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.339 45
|
Controllability | C = | 13,440
|
Relative controllability | Cr = | 0.809 785
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|