Wiktionary edits (sa)

This is the bipartite edit network of the Sanskrit Wiktionary. It contains users and pages from the Sanskrit Wiktionary, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.

Metadata

Codemsa
Internal nameedit-sawiktionary
NameWiktionary edits (sa)
Data sourcehttp://dumps.wikimedia.org/
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Category
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps

Statistics

Size n =263,998
Left size n1 =623
Right size n2 =263,375
Volume m =500,298
Unique edge count m̿ =322,251
Wedge count s =34,374,045,834
Claw count z =2,940,988,042,976,340
Cross count x =1.911 13 × 1020
Square count q =649,273,162
4-Tour count T4 =142,691,013,478
Maximum degree dmax =424,346
Maximum left degree d1max =424,346
Maximum right degree d2max =115
Average degree d =3.790 17
Average left degree d1 =803.047
Average right degree d2 =1.899 57
Fill p =0.001 963 96
Average edge multiplicity m̃ =1.552 51
Size of LCC N =263,491
Diameter δ =13
50-Percentile effective diameter δ0.5 =1.505 82
90-Percentile effective diameter δ0.9 =1.910 48
Median distance δM =2
Mean distance δm =2.027 92
Gini coefficient G =0.682 150
Balanced inequality ratio P =0.234 390
Left balanced inequality ratio P1 =0.014 407 4
Right balanced inequality ratio P2 =0.344 273
Relative edge distribution entropy Her =0.585 304
Power law exponent γ =9.655 10
Tail power law exponent γt =3.351 00
Tail power law exponent with p γ3 =3.351 00
p-value p =0.000 00
Left tail power law exponent with p γ3,1 =1.661 00
Left p-value p1 =0.207 000
Right tail power law exponent with p γ3,2 =7.031 00
Right p-value p2 =0.000 00
Degree assortativity ρ =−0.680 770
Degree assortativity p-value pρ =0.000 00
Spectral norm α =1,028.16
Algebraic connectivity a =0.015 586 1

Plots

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the adjacency matrix

Spectral graph drawing based on the Laplacian

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Edge weight/multiplicity distribution

Temporal distribution

Diameter/density evolution

Matrix decompositions plots

Downloads

References

[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.