Wikipedia edits (scn)
This is the bipartite edit network of the Sicilian Wikipedia. It contains users
and pages from the Sicilian Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 59,039
|
Left size | n1 = | 2,902
|
Right size | n2 = | 56,137
|
Volume | m = | 681,366
|
Unique edge count | m̿ = | 318,199
|
Wedge count | s = | 1,207,411,688
|
Claw count | z = | 4,970,585,671,907
|
Cross count | x = | 18,284,734,238,346,192
|
Square count | q = | 3,080,388,613
|
4-Tour count | T4 = | 29,473,550,354
|
Maximum degree | dmax = | 45,030
|
Maximum left degree | d1max = | 45,030
|
Maximum right degree | d2max = | 2,557
|
Average degree | d = | 23.081 9
|
Average left degree | d1 = | 234.792
|
Average right degree | d2 = | 12.137 6
|
Fill | p = | 0.001 953 22
|
Average edge multiplicity | m̃ = | 2.141 32
|
Size of LCC | N = | 57,687
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.206 30
|
90-Percentile effective diameter | δ0.9 = | 3.900 96
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.365 92
|
Gini coefficient | G = | 0.863 783
|
Balanced inequality ratio | P = | 0.144 540
|
Left balanced inequality ratio | P1 = | 0.031 143 3
|
Right balanced inequality ratio | P2 = | 0.191 075
|
Relative edge distribution entropy | Her = | 0.725 025
|
Power law exponent | γ = | 2.013 49
|
Tail power law exponent | γt = | 1.691 00
|
Tail power law exponent with p | γ3 = | 1.691 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.721 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 7.641 00
|
Right p-value | p2 = | 0.145 000
|
Degree assortativity | ρ = | −0.304 440
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 2,037.53
|
Algebraic connectivity | a = | 0.067 501 6
|
Controllability | C = | 53,113
|
Relative controllability | Cr = | 0.909 641
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|