Wiktionary edits (sd)
This is the bipartite edit network of the Sindhi Wiktionary. It contains users
and pages from the Sindhi Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 5,237
|
Left size | n1 = | 179
|
Right size | n2 = | 5,058
|
Volume | m = | 20,835
|
Unique edge count | m̿ = | 8,675
|
Wedge count | s = | 7,527,102
|
Claw count | z = | 7,882,348,717
|
Cross count | x = | 6,867,063,482,926
|
Square count | q = | 1,126,409
|
4-Tour count | T4 = | 39,152,478
|
Maximum degree | dmax = | 11,942
|
Maximum left degree | d1max = | 11,942
|
Maximum right degree | d2max = | 120
|
Average degree | d = | 7.956 85
|
Average left degree | d1 = | 116.397
|
Average right degree | d2 = | 4.119 22
|
Fill | p = | 0.009 581 59
|
Average edge multiplicity | m̃ = | 2.401 73
|
Size of LCC | N = | 4,973
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 1.855 11
|
90-Percentile effective diameter | δ0.9 = | 5.116 39
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.104 95
|
Gini coefficient | G = | 0.785 688
|
Balanced inequality ratio | P = | 0.186 753
|
Left balanced inequality ratio | P1 = | 0.061 435 1
|
Right balanced inequality ratio | P2 = | 0.269 258
|
Relative edge distribution entropy | Her = | 0.706 470
|
Power law exponent | γ = | 3.825 84
|
Tail power law exponent | γt = | 2.341 00
|
Tail power law exponent with p | γ3 = | 2.341 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.621 00
|
Left p-value | p1 = | 0.008 000 00
|
Right tail power law exponent with p | γ3,2 = | 2.401 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.404 854
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 393.845
|
Algebraic connectivity | a = | 0.010 465 3
|
Spectral separation | |λ1[A] / λ2[A]| = | 4.041 17
|
Controllability | C = | 4,848
|
Relative controllability | Cr = | 0.932 308
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|