Wikibooks edits (simple)
This is the bipartite edit network of the Simple English Wikibooks. It contains
users and pages from the Simple English Wikibooks, connected by edit events.
Each edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 3,253
|
Left size | n1 = | 635
|
Right size | n2 = | 2,618
|
Volume | m = | 11,524
|
Unique edge count | m̿ = | 6,120
|
Wedge count | s = | 588,463
|
Claw count | z = | 69,823,557
|
Cross count | x = | 7,240,340,104
|
Square count | q = | 130,612
|
4-Tour count | T4 = | 3,413,892
|
Maximum degree | dmax = | 1,279
|
Maximum left degree | d1max = | 1,279
|
Maximum right degree | d2max = | 469
|
Average degree | d = | 7.085 15
|
Average left degree | d1 = | 18.148 0
|
Average right degree | d2 = | 4.401 83
|
Fill | p = | 0.003 681 36
|
Average edge multiplicity | m̃ = | 1.883 01
|
Size of LCC | N = | 3,103
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.521 98
|
90-Percentile effective diameter | δ0.9 = | 4.769 67
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.982 58
|
Gini coefficient | G = | 0.738 208
|
Balanced inequality ratio | P = | 0.212 166
|
Left balanced inequality ratio | P1 = | 0.135 890
|
Right balanced inequality ratio | P2 = | 0.287 227
|
Relative edge distribution entropy | Her = | 0.829 648
|
Power law exponent | γ = | 2.574 08
|
Tail power law exponent | γt = | 2.431 00
|
Tail power law exponent with p | γ3 = | 2.431 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.801 00
|
Left p-value | p1 = | 0.492 000
|
Right tail power law exponent with p | γ3,2 = | 3.121 00
|
Right p-value | p2 = | 0.311 000
|
Degree assortativity | ρ = | −0.211 145
|
Degree assortativity p-value | pρ = | 1.241 04 × 10−62
|
Spectral norm | α = | 236.759
|
Algebraic connectivity | a = | 0.087 903 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.976 48
|
Controllability | C = | 2,261
|
Relative controllability | Cr = | 0.698 486
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|