Wikiquote edits (sk)
This is the bipartite edit network of the Slovak Wikiquote. It contains users
and pages from the Slovak Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 8,005
|
Left size | n1 = | 580
|
Right size | n2 = | 7,425
|
Volume | m = | 71,775
|
Unique edge count | m̿ = | 28,057
|
Wedge count | s = | 34,481,675
|
Claw count | z = | 49,057,356,980
|
Cross count | x = | 60,482,748,613,131
|
Square count | q = | 26,113,748
|
4-Tour count | T4 = | 346,910,738
|
Maximum degree | dmax = | 33,719
|
Maximum left degree | d1max = | 33,719
|
Maximum right degree | d2max = | 613
|
Average degree | d = | 17.932 5
|
Average left degree | d1 = | 123.750
|
Average right degree | d2 = | 9.666 67
|
Fill | p = | 0.006 515 04
|
Average edge multiplicity | m̃ = | 2.558 19
|
Size of LCC | N = | 7,825
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 1.847 43
|
90-Percentile effective diameter | δ0.9 = | 3.867 13
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.836 38
|
Gini coefficient | G = | 0.806 499
|
Balanced inequality ratio | P = | 0.183 344
|
Left balanced inequality ratio | P1 = | 0.044 054 3
|
Right balanced inequality ratio | P2 = | 0.263 323
|
Relative edge distribution entropy | Her = | 0.734 196
|
Power law exponent | γ = | 2.009 93
|
Tail power law exponent | γt = | 2.681 00
|
Tail power law exponent with p | γ3 = | 2.681 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.691 00
|
Left p-value | p1 = | 0.017 000 0
|
Right tail power law exponent with p | γ3,2 = | 7.891 00
|
Right p-value | p2 = | 0.006 000 00
|
Degree assortativity | ρ = | −0.387 896
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,391.72
|
Algebraic connectivity | a = | 0.029 769 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 7.420 03
|
Controllability | C = | 6,899
|
Relative controllability | Cr = | 0.863 562
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|