Wikibooks edits (sl)
This is the bipartite edit network of the Slovenian Wikibooks. It contains
users and pages from the Slovenian Wikibooks, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,250
|
Left size | n1 = | 409
|
Right size | n2 = | 1,841
|
Volume | m = | 8,809
|
Unique edge count | m̿ = | 2,555
|
Wedge count | s = | 126,934
|
Claw count | z = | 6,820,138
|
Cross count | x = | 300,590,099
|
Square count | q = | 11,675
|
4-Tour count | T4 = | 607,082
|
Maximum degree | dmax = | 1,794
|
Maximum left degree | d1max = | 1,633
|
Maximum right degree | d2max = | 1,794
|
Average degree | d = | 7.830 22
|
Average left degree | d1 = | 21.537 9
|
Average right degree | d2 = | 4.784 90
|
Fill | p = | 0.003 393 23
|
Average edge multiplicity | m̃ = | 3.447 75
|
Size of LCC | N = | 1,822
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 4.146 41
|
90-Percentile effective diameter | δ0.9 = | 7.523 42
|
Median distance | δM = | 5
|
Mean distance | δm = | 5.130 21
|
Gini coefficient | G = | 0.818 192
|
Balanced inequality ratio | P = | 0.155 750
|
Left balanced inequality ratio | P1 = | 0.186 400
|
Right balanced inequality ratio | P2 = | 0.201 271
|
Relative edge distribution entropy | Her = | 0.836 713
|
Power law exponent | γ = | 4.615 80
|
Tail power law exponent | γt = | 2.531 00
|
Tail power law exponent with p | γ3 = | 2.531 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.901 00
|
Left p-value | p1 = | 0.140 000
|
Right tail power law exponent with p | γ3,2 = | 2.871 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.273 766
|
Degree assortativity p-value | pρ = | 3.716 25 × 10−45
|
Spectral norm | α = | 1,335.11
|
Algebraic connectivity | a = | 0.006 163 19
|
Spectral separation | |λ1[A] / λ2[A]| = | 4.375 17
|
Controllability | C = | 1,573
|
Relative controllability | Cr = | 0.702 546
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|