Wikiversity edits (sl)
This is the bipartite edit network of the Slovenian Wikiversity. It contains
users and pages from the Slovenian Wikiversity, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 3,447
|
Left size | n1 = | 1,176
|
Right size | n2 = | 2,271
|
Volume | m = | 27,076
|
Unique edge count | m̿ = | 6,012
|
Wedge count | s = | 790,631
|
Claw count | z = | 137,878,586
|
Cross count | x = | 19,682,771,059
|
Square count | q = | 409,437
|
4-Tour count | T4 = | 6,457,824
|
Maximum degree | dmax = | 3,215
|
Maximum left degree | d1max = | 3,215
|
Maximum right degree | d2max = | 483
|
Average degree | d = | 15.709 9
|
Average left degree | d1 = | 23.023 8
|
Average right degree | d2 = | 11.922 5
|
Fill | p = | 0.002 251 10
|
Average edge multiplicity | m̃ = | 4.503 66
|
Size of LCC | N = | 3,224
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.934 06
|
90-Percentile effective diameter | δ0.9 = | 5.778 29
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.471 55
|
Gini coefficient | G = | 0.693 168
|
Balanced inequality ratio | P = | 0.239 289
|
Left balanced inequality ratio | P1 = | 0.208 857
|
Right balanced inequality ratio | P2 = | 0.235 633
|
Relative edge distribution entropy | Her = | 0.828 865
|
Power law exponent | γ = | 2.610 97
|
Tail power law exponent | γt = | 1.991 00
|
Tail power law exponent with p | γ3 = | 1.991 00
|
p-value | p = | 0.132 000
|
Left tail power law exponent with p | γ3,1 = | 2.521 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 1.981 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.340 959
|
Degree assortativity p-value | pρ = | 1.564 32 × 10−163
|
Spectral norm | α = | 395.753
|
Algebraic connectivity | a = | 0.024 635 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.035 88
|
Controllability | C = | 1,649
|
Relative controllability | Cr = | 0.484 146
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|