Wikiquote edits (sr)
This is the bipartite edit network of the Serbian Wikiquote. It contains users
and pages from the Serbian Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,277
|
Left size | n1 = | 402
|
Right size | n2 = | 1,875
|
Volume | m = | 8,672
|
Unique edge count | m̿ = | 4,784
|
Wedge count | s = | 309,076
|
Claw count | z = | 20,608,795
|
Cross count | x = | 1,249,709,054
|
Square count | q = | 155,239
|
4-Tour count | T4 = | 2,492,596
|
Maximum degree | dmax = | 712
|
Maximum left degree | d1max = | 712
|
Maximum right degree | d2max = | 317
|
Average degree | d = | 7.617 04
|
Average left degree | d1 = | 21.572 1
|
Average right degree | d2 = | 4.625 07
|
Fill | p = | 0.006 346 93
|
Average edge multiplicity | m̃ = | 1.812 71
|
Size of LCC | N = | 1,961
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.505 00
|
90-Percentile effective diameter | δ0.9 = | 5.126 72
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.024 48
|
Gini coefficient | G = | 0.762 413
|
Balanced inequality ratio | P = | 0.193 842
|
Left balanced inequality ratio | P1 = | 0.133 649
|
Right balanced inequality ratio | P2 = | 0.250 577
|
Relative edge distribution entropy | Her = | 0.829 711
|
Power law exponent | γ = | 2.538 12
|
Tail power law exponent | γt = | 1.921 00
|
Tail power law exponent with p | γ3 = | 1.921 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.711 00
|
Left p-value | p1 = | 0.223 000
|
Right tail power law exponent with p | γ3,2 = | 1.981 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.102 200
|
Degree assortativity p-value | pρ = | 1.385 27 × 10−12
|
Spectral norm | α = | 304.185
|
Algebraic connectivity | a = | 0.026 045 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.530 86
|
Controllability | C = | 1,509
|
Relative controllability | Cr = | 0.678 202
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|