Wiktionary edits (sv)
This is the bipartite edit network of the Swedish Wiktionary. It contains users
and pages from the Swedish Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 624,325
|
Left size | n1 = | 2,340
|
Right size | n2 = | 621,985
|
Volume | m = | 2,728,074
|
Unique edge count | m̿ = | 1,712,445
|
Wedge count | s = | 121,806,057,857
|
Claw count | z = | 11,082,853,059,264,392
|
Cross count | x = | 8.563 01 × 1020
|
Square count | q = | 42,604,063,037
|
4-Tour count | T4 = | 828,060,985,674
|
Maximum degree | dmax = | 650,950
|
Maximum left degree | d1max = | 650,950
|
Maximum right degree | d2max = | 5,800
|
Average degree | d = | 8.739 28
|
Average left degree | d1 = | 1,165.84
|
Average right degree | d2 = | 4.386 08
|
Fill | p = | 0.001 176 58
|
Average edge multiplicity | m̃ = | 1.593 09
|
Size of LCC | N = | 572,945
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.005 95
|
90-Percentile effective diameter | δ0.9 = | 3.808 31
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.022 11
|
Gini coefficient | G = | 0.757 736
|
Balanced inequality ratio | P = | 0.207 172
|
Left balanced inequality ratio | P1 = | 0.021 320 2
|
Right balanced inequality ratio | P2 = | 0.308 481
|
Power law exponent | γ = | 2.228 47
|
Tail power law exponent | γt = | 2.961 00
|
Tail power law exponent with p | γ3 = | 2.961 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.451 00
|
Left p-value | p1 = | 0.015 000 0
|
Right tail power law exponent with p | γ3,2 = | 5.131 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.301 992
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 4,465.17
|
Algebraic connectivity | a = | 0.043 365 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.284 46
|
Controllability | C = | 568,934
|
Relative controllability | Cr = | 0.992 277
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|