Wikibooks edits (th)
This is the bipartite edit network of the Thai Wikibooks. It contains users and
pages from the Thai Wikibooks, connected by edit events. Each edge represents
an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 12,734
|
Left size | n1 = | 559
|
Right size | n2 = | 12,175
|
Volume | m = | 33,220
|
Unique edge count | m̿ = | 17,008
|
Wedge count | s = | 16,576,244
|
Claw count | z = | 19,039,681,230
|
Cross count | x = | 18,033,973,613,858
|
Square count | q = | 828,109
|
4-Tour count | T4 = | 72,964,560
|
Maximum degree | dmax = | 6,793
|
Maximum left degree | d1max = | 6,793
|
Maximum right degree | d2max = | 822
|
Average degree | d = | 5.217 53
|
Average left degree | d1 = | 59.427 5
|
Average right degree | d2 = | 2.728 54
|
Fill | p = | 0.002 499 04
|
Average edge multiplicity | m̃ = | 1.953 20
|
Size of LCC | N = | 12,351
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 3.779 30
|
90-Percentile effective diameter | δ0.9 = | 5.858 03
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.511 68
|
Gini coefficient | G = | 0.780 053
|
Balanced inequality ratio | P = | 0.175 903
|
Left balanced inequality ratio | P1 = | 0.077 603 9
|
Right balanced inequality ratio | P2 = | 0.268 934
|
Relative edge distribution entropy | Her = | 0.728 070
|
Power law exponent | γ = | 5.195 72
|
Tail power law exponent | γt = | 2.661 00
|
Tail power law exponent with p | γ3 = | 2.661 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.721 00
|
Left p-value | p1 = | 0.494 000
|
Right tail power law exponent with p | γ3,2 = | 2.791 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.347 503
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,432.63
|
Algebraic connectivity | a = | 0.014 846 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 7.070 80
|
Controllability | C = | 11,652
|
Relative controllability | Cr = | 0.921 617
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|