Wiktionary edits (th)
This is the bipartite edit network of the Thai Wiktionary. It contains users
and pages from the Thai Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 163,993
|
Left size | n1 = | 589
|
Right size | n2 = | 163,404
|
Volume | m = | 887,207
|
Unique edge count | m̿ = | 310,396
|
Wedge count | s = | 11,452,353,841
|
Claw count | z = | 479,935,914,500,272
|
Cross count | x = | 1.648 12 × 1019
|
Square count | q = | 1,330,643,893
|
4-Tour count | T4 = | 56,455,189,436
|
Maximum degree | dmax = | 588,581
|
Maximum left degree | d1max = | 588,581
|
Maximum right degree | d2max = | 465
|
Average degree | d = | 10.820 1
|
Average left degree | d1 = | 1,506.29
|
Average right degree | d2 = | 5.429 53
|
Fill | p = | 0.003 225 06
|
Average edge multiplicity | m̃ = | 2.858 31
|
Size of LCC | N = | 163,672
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 1.593 14
|
90-Percentile effective diameter | δ0.9 = | 3.393 30
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.366 19
|
Gini coefficient | G = | 0.669 908
|
Balanced inequality ratio | P = | 0.264 848
|
Left balanced inequality ratio | P1 = | 0.026 487 6
|
Right balanced inequality ratio | P2 = | 0.385 328
|
Relative edge distribution entropy | Her = | 0.638 208
|
Power law exponent | γ = | 3.484 44
|
Tail power law exponent | γt = | 2.841 00
|
Tail power law exponent with p | γ3 = | 2.841 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.571 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.009 000 00
|
Degree assortativity | ρ = | −0.524 964
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,737.11
|
Algebraic connectivity | a = | 0.009 252 02
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.216 76
|
Controllability | C = | 162,814
|
Relative controllability | Cr = | 0.993 204
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|