Wiktionary edits (tl)
This is the bipartite edit network of the Tagalog Wiktionary. It contains users
and pages from the Tagalog Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 26,189
|
Left size | n1 = | 376
|
Right size | n2 = | 25,813
|
Volume | m = | 130,807
|
Unique edge count | m̿ = | 91,333
|
Wedge count | s = | 493,701,167
|
Claw count | z = | 2,354,396,555,396
|
Cross count | x = | 9,245,022,503,742,412
|
Square count | q = | 408,919,559
|
4-Tour count | T4 = | 5,246,344,886
|
Maximum degree | dmax = | 32,591
|
Maximum left degree | d1max = | 32,591
|
Maximum right degree | d2max = | 171
|
Average degree | d = | 9.989 46
|
Average left degree | d1 = | 347.891
|
Average right degree | d2 = | 5.067 49
|
Fill | p = | 0.009 410 26
|
Average edge multiplicity | m̃ = | 1.432 20
|
Size of LCC | N = | 25,224
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 1.790 92
|
90-Percentile effective diameter | δ0.9 = | 3.841 94
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.818 84
|
Gini coefficient | G = | 0.674 372
|
Balanced inequality ratio | P = | 0.253 415
|
Left balanced inequality ratio | P1 = | 0.041 565 1
|
Right balanced inequality ratio | P2 = | 0.373 115
|
Relative edge distribution entropy | Her = | 0.687 878
|
Power law exponent | γ = | 1.864 04
|
Tail power law exponent | γt = | 5.071 00
|
Tail power law exponent with p | γ3 = | 5.071 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.561 00
|
Left p-value | p1 = | 0.018 000 0
|
Right tail power law exponent with p | γ3,2 = | 6.921 00
|
Right p-value | p2 = | 0.567 000
|
Degree assortativity | ρ = | −0.119 513
|
Degree assortativity p-value | pρ = | 1.067 00 × 10−287
|
Spectral norm | α = | 381.698
|
Algebraic connectivity | a = | 0.015 958 8
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.411 32
|
Controllability | C = | 24,784
|
Relative controllability | Cr = | 0.971 464
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|