Wikipedia edits (ty)
This is the bipartite edit network of the Tahitian Wikipedia. It contains users
and pages from the Tahitian Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size  n =  3,404

Left size  n_{1} =  620

Right size  n_{2} =  2,784

Volume  m =  42,098

Unique edge count  m̿ =  19,396

Wedge count  s =  4,224,295

Claw count  z =  853,421,818

Cross count  x =  156,187,915,595

Square count  q =  17,294,040

4Tour count  T_{4} =  155,297,780

Maximum degree  d_{max} =  3,258

Maximum left degree  d_{1max} =  3,258

Maximum right degree  d_{2max} =  276

Average degree  d =  24.734 4

Average left degree  d_{1} =  67.900 0

Average right degree  d_{2} =  15.121 4

Fill  p =  0.011 237 0

Average edge multiplicity  m̃ =  2.170 45

Size of LCC  N =  2,844

Diameter  δ =  13

50Percentile effective diameter  δ_{0.5} =  3.442 52

90Percentile effective diameter  δ_{0.9} =  5.557 40

Median distance  δ_{M} =  4

Mean distance  δ_{m} =  4.001 32

Gini coefficient  G =  0.818 632

Balanced inequality ratio  P =  0.180 769

Left balanced inequality ratio  P_{1} =  0.083 163 1

Right balanced inequality ratio  P_{2} =  0.219 250

Relative edge distribution entropy  H_{er} =  0.798 415

Power law exponent  γ =  1.905 57

Tail power law exponent  γ_{t} =  2.651 00

Tail power law exponent with p  γ_{3} =  2.651 00

pvalue  p =  0.000 00

Left tail power law exponent with p  γ_{3,1} =  1.611 00

Left pvalue  p_{1} =  0.000 00

Right tail power law exponent with p  γ_{3,2} =  7.491 00

Right pvalue  p_{2} =  0.856 000

Degree assortativity  ρ =  −0.023 458 7

Degree assortativity pvalue  p_{ρ} =  0.001 085 70

Spectral norm  α =  335.788

Algebraic connectivity  a =  0.026 260 0

Spectral separation  λ_{1}[A] / λ_{2}[A] =  2.446 94

Controllability  C =  2,226

Relative controllability  C_{r} =  0.659 360

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
