Wikiquote edits (uk)
This is the bipartite edit network of the Ukrainian Wikiquote. It contains
users and pages from the Ukrainian Wikiquote, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 17,478
|
Left size | n1 = | 779
|
Right size | n2 = | 16,699
|
Volume | m = | 61,669
|
Unique edge count | m̿ = | 32,615
|
Wedge count | s = | 59,766,236
|
Claw count | z = | 147,067,363,899
|
Cross count | x = | 316,640,938,430,016
|
Square count | q = | 6,430,558
|
4-Tour count | T4 = | 290,627,986
|
Maximum degree | dmax = | 18,542
|
Maximum left degree | d1max = | 18,542
|
Maximum right degree | d2max = | 518
|
Average degree | d = | 7.056 76
|
Average left degree | d1 = | 79.164 3
|
Average right degree | d2 = | 3.692 98
|
Fill | p = | 0.002 507 20
|
Average edge multiplicity | m̃ = | 1.890 82
|
Size of LCC | N = | 17,220
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.184 99
|
90-Percentile effective diameter | δ0.9 = | 3.884 94
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.296 99
|
Gini coefficient | G = | 0.780 129
|
Balanced inequality ratio | P = | 0.191 222
|
Left balanced inequality ratio | P1 = | 0.075 402 6
|
Right balanced inequality ratio | P2 = | 0.271 692
|
Relative edge distribution entropy | Her = | 0.719 238
|
Power law exponent | γ = | 3.403 77
|
Tail power law exponent | γt = | 2.221 00
|
Tail power law exponent with p | γ3 = | 2.221 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.671 00
|
Left p-value | p1 = | 0.082 000 0
|
Right tail power law exponent with p | γ3,2 = | 2.271 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.365 714
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 546.522
|
Algebraic connectivity | a = | 0.018 884 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.651 52
|
Controllability | C = | 16,016
|
Relative controllability | Cr = | 0.917 402
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|