Wikiquote edits (ur)

This is the bipartite edit network of the Urdu Wikiquote. It contains users and pages from the Urdu Wikiquote, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.

Metadata

Codequr
Internal nameedit-urwikiquote
NameWikiquote edits (ur)
Data sourcehttp://dumps.wikimedia.org/
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Category
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps

Statistics

Size n =2,169
Left size n1 =221
Right size n2 =1,948
Volume m =3,995
Unique edge count m̿ =2,455
Wedge count s =836,069
Claw count z =335,377,861
Cross count x =104,934,267,562
Square count q =6,530
4-Tour count T4 =3,401,650
Maximum degree dmax =2,121
Maximum left degree d1max =2,121
Maximum right degree d2max =90
Average degree d =3.683 73
Average left degree d1 =18.076 9
Average right degree d2 =2.050 82
Fill p =0.005 702 57
Average edge multiplicity m̃ =1.627 29
Size of LCC N =1,932
Diameter δ =15
50-Percentile effective diameter δ0.5 =3.127 21
90-Percentile effective diameter δ0.9 =7.678 45
Median distance δM =4
Mean distance δm =4.120 16
Gini coefficient G =0.688 368
Relative edge distribution entropy Her =0.745 336
Power law exponent γ =5.781 56
Tail power law exponent γt =2.781 00
Tail power law exponent with p γ3 =2.781 00
p-value p =0.000 00
Left tail power law exponent with p γ3,1 =1.941 00
Left p-value p1 =0.563 000
Right tail power law exponent with p γ3,2 =3.121 00
Right p-value p2 =0.000 00
Degree assortativity ρ =−0.263 893
Degree assortativity p-value pρ =2.157 92 × 10−40
Spectral norm α =93.935 2
Algebraic connectivity a =0.004 614 54

Plots

Fruchterman–Reingold graph drawing

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the adjacency matrix

Spectral graph drawing based on the Laplacian

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Double Laplacian graph drawing

Delaunay graph drawing

Edge weight/multiplicity distribution

Temporal distribution

Temporal hop distribution

Diameter/density evolution

Matrix decompositions plots

Downloads

References

[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.