Wikiquote edits (vec)
This is the bipartite edit network of the Venetian Wikisource. It contains
users and pages from the Venetian Wikisource, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 12,202
|
Left size | n1 = | 230
|
Right size | n2 = | 11,972
|
Volume | m = | 53,354
|
Unique edge count | m̿ = | 25,042
|
Wedge count | s = | 90,684,343
|
Claw count | z = | 269,529,819,851
|
Cross count | x = | 647,417,886,971,566
|
Square count | q = | 41,248,188
|
4-Tour count | T4 = | 692,818,484
|
Maximum degree | dmax = | 23,850
|
Maximum left degree | d1max = | 23,850
|
Maximum right degree | d2max = | 346
|
Average degree | d = | 8.745 12
|
Average left degree | d1 = | 231.974
|
Average right degree | d2 = | 4.456 57
|
Fill | p = | 0.009 094 41
|
Average edge multiplicity | m̃ = | 2.130 58
|
Size of LCC | N = | 12,036
|
Diameter | δ = | 9
|
50-Percentile effective diameter | δ0.5 = | 1.570 63
|
90-Percentile effective diameter | δ0.9 = | 3.147 51
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.264 53
|
Gini coefficient | G = | 0.737 999
|
Balanced inequality ratio | P = | 0.223 591
|
Left balanced inequality ratio | P1 = | 0.031 225 4
|
Right balanced inequality ratio | P2 = | 0.324 943
|
Relative edge distribution entropy | Her = | 0.653 440
|
Power law exponent | γ = | 2.675 32
|
Tail power law exponent | γt = | 5.931 00
|
Tail power law exponent with p | γ3 = | 5.931 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.701 00
|
Left p-value | p1 = | 0.474 000
|
Right tail power law exponent with p | γ3,2 = | 6.661 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.275 814
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 577.865
|
Algebraic connectivity | a = | 0.034 515 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.035 53
|
Controllability | C = | 11,779
|
Relative controllability | Cr = | 0.965 413
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|