Wiktionary edits (wa)
This is the bipartite edit network of the Walloon Wiktionary. It contains users
and pages from the Walloon Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 46,386
|
Left size | n1 = | 310
|
Right size | n2 = | 46,076
|
Volume | m = | 182,251
|
Unique edge count | m̿ = | 100,917
|
Wedge count | s = | 771,842,591
|
Claw count | z = | 5,979,787,692,180
|
Cross count | x = | 37,679,772,457,299,112
|
Square count | q = | 159,503,737
|
4-Tour count | T4 = | 4,363,602,390
|
Maximum degree | dmax = | 82,442
|
Maximum left degree | d1max = | 82,442
|
Maximum right degree | d2max = | 836
|
Average degree | d = | 7.858 02
|
Average left degree | d1 = | 587.906
|
Average right degree | d2 = | 3.955 44
|
Fill | p = | 0.007 065 26
|
Average edge multiplicity | m̃ = | 1.805 95
|
Size of LCC | N = | 46,058
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 1.932 25
|
90-Percentile effective diameter | δ0.9 = | 3.822 25
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.964 66
|
Gini coefficient | G = | 0.752 993
|
Balanced inequality ratio | P = | 0.209 623
|
Left balanced inequality ratio | P1 = | 0.047 846 1
|
Right balanced inequality ratio | P2 = | 0.307 093
|
Relative edge distribution entropy | Her = | 0.669 572
|
Power law exponent | γ = | 2.745 94
|
Tail power law exponent | γt = | 3.861 00
|
Tail power law exponent with p | γ3 = | 3.861 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.421 00
|
Left p-value | p1 = | 0.046 000 0
|
Right tail power law exponent with p | γ3,2 = | 4.161 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.440 211
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,234.89
|
Algebraic connectivity | a = | 0.008 811 63
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.286 81
|
Controllability | C = | 45,699
|
Relative controllability | Cr = | 0.987 382
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|