Wikiquote edits (yi)
This is the bipartite edit network of the Yiddish Wikisource. It contains users
and pages from the Yiddish Wikisource, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 5,501
|
Left size | n1 = | 215
|
Right size | n2 = | 5,286
|
Volume | m = | 13,882
|
Unique edge count | m̿ = | 5,738
|
Wedge count | s = | 9,979,543
|
Claw count | z = | 14,748,961,715
|
Cross count | x = | 16,420,171,663,288
|
Square count | q = | 5,184
|
4-Tour count | T4 = | 39,972,380
|
Maximum degree | dmax = | 11,553
|
Maximum left degree | d1max = | 11,553
|
Maximum right degree | d2max = | 136
|
Average degree | d = | 5.047 08
|
Average left degree | d1 = | 64.567 4
|
Average right degree | d2 = | 2.626 18
|
Fill | p = | 0.005 048 88
|
Average edge multiplicity | m̃ = | 2.419 31
|
Size of LCC | N = | 5,188
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 1.615 58
|
90-Percentile effective diameter | δ0.9 = | 3.534 72
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.426 72
|
Gini coefficient | G = | 0.733 546
|
Balanced inequality ratio | P = | 0.212 469
|
Left balanced inequality ratio | P1 = | 0.049 848 7
|
Right balanced inequality ratio | P2 = | 0.310 258
|
Relative edge distribution entropy | Her = | 0.655 806
|
Power law exponent | γ = | 13.098 2
|
Tail power law exponent | γt = | 3.711 00
|
Tail power law exponent with p | γ3 = | 3.711 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.841 00
|
Left p-value | p1 = | 0.627 000
|
Right tail power law exponent with p | γ3,2 = | 4.151 00
|
Right p-value | p2 = | 0.469 000
|
Degree assortativity | ρ = | −0.302 436
|
Degree assortativity p-value | pρ = | 1.153 53 × 10−121
|
Spectral norm | α = | 294.389
|
Algebraic connectivity | a = | 0.008 773 52
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.866 87
|
Controllability | C = | 5,044
|
Relative controllability | Cr = | 0.925 844
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|