Wiktionary edits (yi)
This is the bipartite edit network of the Yiddish Wiktionary. It contains users
and pages from the Yiddish Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,848
|
Left size | n1 = | 310
|
Right size | n2 = | 2,538
|
Volume | m = | 9,841
|
Unique edge count | m̿ = | 4,220
|
Wedge count | s = | 1,315,781
|
Claw count | z = | 608,704,222
|
Cross count | x = | 230,267,698,556
|
Square count | q = | 111,478
|
4-Tour count | T4 = | 6,169,884
|
Maximum degree | dmax = | 4,742
|
Maximum left degree | d1max = | 4,742
|
Maximum right degree | d2max = | 274
|
Average degree | d = | 6.910 81
|
Average left degree | d1 = | 31.745 2
|
Average right degree | d2 = | 3.877 46
|
Fill | p = | 0.005 363 63
|
Average edge multiplicity | m̃ = | 2.331 99
|
Size of LCC | N = | 2,515
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.059 43
|
90-Percentile effective diameter | δ0.9 = | 5.078 67
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.425 86
|
Gini coefficient | G = | 0.772 189
|
Balanced inequality ratio | P = | 0.188 091
|
Left balanced inequality ratio | P1 = | 0.090 336 3
|
Right balanced inequality ratio | P2 = | 0.267 554
|
Relative edge distribution entropy | Her = | 0.767 724
|
Power law exponent | γ = | 3.701 74
|
Tail power law exponent | γt = | 2.301 00
|
Tail power law exponent with p | γ3 = | 2.301 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.771 00
|
Left p-value | p1 = | 0.250 000
|
Right tail power law exponent with p | γ3,2 = | 2.801 00
|
Right p-value | p2 = | 0.003 000 00
|
Degree assortativity | ρ = | −0.294 594
|
Degree assortativity p-value | pρ = | 2.930 18 × 10−85
|
Spectral norm | α = | 360.437
|
Algebraic connectivity | a = | 0.016 250 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.282 15
|
Controllability | C = | 2,240
|
Relative controllability | Cr = | 0.788 732
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|