Wikibooks edits (za)

This is the bipartite edit network of the Zhuang Wikibooks. It contains users and pages from the Zhuang Wikibooks, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.

Metadata

Codebza
Internal nameedit-zawikibooks
NameWikibooks edits (za)
Data sourcehttp://dumps.wikimedia.org/
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Category
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps

Statistics

Size n =190
Left size n1 =48
Right size n2 =142
Volume m =233
Unique edge count m̿ =169
Wedge count s =1,230
Claw count z =14,665
Cross count x =149,753
Square count q =17
4-Tour count T4 =5,538
Maximum degree dmax =55
Maximum left degree d1max =55
Maximum right degree d2max =42
Average degree d =2.452 63
Average left degree d1 =4.854 17
Average right degree d2 =1.640 85
Fill p =0.024 794 6
Average edge multiplicity m̃ =1.378 70
Size of LCC N =46
Diameter δ =2
50-Percentile effective diameter δ0.5 =1.467 55
90-Percentile effective diameter δ0.9 =1.893 51
Median distance δM =2
Mean distance δm =1.919 31
Gini coefficient G =0.589 373
Balanced inequality ratio P =0.266 094
Left balanced inequality ratio P1 =0.240 343
Right balanced inequality ratio P2 =0.373 391
Relative edge distribution entropy Her =0.899 268
Power law exponent γ =4.617 07
Tail power law exponent γt =2.541 00
Tail power law exponent with p γ3 =2.541 00
p-value p =0.883 000
Left tail power law exponent with p γ3,1 =2.191 00
Left p-value p1 =0.216 000
Right tail power law exponent with p γ3,2 =3.301 00
Right p-value p2 =0.238 000
Degree assortativity ρ =−0.321 601
Degree assortativity p-value pρ =2.011 52 × 10−5
Spectral norm α =42.201 9
Spectral separation 1[A] / λ2[A]| =6.291 09
Controllability C =97
Relative controllability Cr =0.513 228

Plots

Fruchterman–Reingold graph drawing

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the adjacency matrix

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Double Laplacian graph drawing

Delaunay graph drawing

Edge weight/multiplicity distribution

Temporal distribution

Temporal hop distribution

Diameter/density evolution

Matrix decompositions plots

Downloads

References

[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.