Wikinews edits (zh)
This is the bipartite edit network of the Chinese Wikinews. It contains users
and pages from the Chinese Wikinews, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 25,842
|
Left size | n1 = | 1,395
|
Right size | n2 = | 24,447
|
Volume | m = | 100,229
|
Unique edge count | m̿ = | 54,071
|
Wedge count | s = | 65,390,207
|
Claw count | z = | 105,912,951,823
|
Cross count | x = | 165,887,088,863,476
|
Square count | q = | 17,126,990
|
4-Tour count | T4 = | 398,711,158
|
Maximum degree | dmax = | 18,491
|
Maximum left degree | d1max = | 18,491
|
Maximum right degree | d2max = | 1,726
|
Average degree | d = | 7.757 06
|
Average left degree | d1 = | 71.848 7
|
Average right degree | d2 = | 4.099 85
|
Fill | p = | 0.001 585 49
|
Average edge multiplicity | m̃ = | 1.853 66
|
Size of LCC | N = | 25,219
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.420 23
|
90-Percentile effective diameter | δ0.9 = | 3.962 63
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.773 03
|
Gini coefficient | G = | 0.730 989
|
Balanced inequality ratio | P = | 0.222 999
|
Left balanced inequality ratio | P1 = | 0.067 016 5
|
Right balanced inequality ratio | P2 = | 0.322 122
|
Relative edge distribution entropy | Her = | 0.749 485
|
Power law exponent | γ = | 2.668 97
|
Tail power law exponent | γt = | 3.201 00
|
Tail power law exponent with p | γ3 = | 3.201 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.741 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.331 00
|
Right p-value | p2 = | 0.108 000
|
Degree assortativity | ρ = | −0.106 105
|
Degree assortativity p-value | pρ = | 3.768 81 × 10−135
|
Spectral norm | α = | 510.264
|
Algebraic connectivity | a = | 0.014 174 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.365 47
|
Controllability | C = | 23,274
|
Relative controllability | Cr = | 0.902 968
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|