SAP forums
This network contains SAP forum topics and replies. The edges are directed and
unweighted, going from the responding user to the user who created the topic.
Metadata
Statistics
Size  n =  29,714

Volume  m =  316,266

Unique edge count  m̿ =  165,185

Wedge count  s =  20,540,914

Claw count  z =  33,525,136,262

Cross count  x =  34,767,043,592,978

Triangle count  t =  257,803

Square count  q =  21,803,510

4Tour count  T_{4} =  256,822,948

Maximum degree  d_{max} =  29,766

Maximum outdegree  d^{+}_{max} =  20,480

Maximum indegree  d^{−}_{max} =  9,286

Average degree  d =  21.287 3

Fill  p =  0.000 187 089

Average edge multiplicity  m̃ =  1.914 62

Size of LCC  N =  28,455

Size of LSCC  N_{s} =  15,879

Relative size of LSCC  N^{r}_{s} =  0.534 395

Diameter  δ =  16

50Percentile effective diameter  δ_{0.5} =  4.277 96

90Percentile effective diameter  δ_{0.9} =  5.835 03

Median distance  δ_{M} =  5

Mean distance  δ_{m} =  4.778 45

Gini coefficient  G =  0.810 567

Relative edge distribution entropy  H_{er} =  0.861 872

Power law exponent  γ =  1.874 83

Tail power law exponent  γ_{t} =  2.271 00

Tail power law exponent with p  γ_{3} =  2.271 00

pvalue  p =  0.494 000

Outdegree tail power law exponent with p  γ_{3,o} =  2.061 00

Outdegree pvalue  p_{o} =  0.081 000 0

Indegree tail power law exponent with p  γ_{3,i} =  2.691 00

Indegree pvalue  p_{i} =  0.582 000

Degree assortativity  ρ =  −0.104 604

Degree assortativity pvalue  p_{ρ} =  0.000 00

In/outdegree correlation  ρ^{±} =  +0.788 544

Clustering coefficient  c =  0.037 652 1

Spectral norm  α =  1,490.72

Operator 2norm  ν =  922.825

Cyclic eigenvalue  π =  695.387

Algebraic connectivity  a =  0.027 570 1

Spectral separation  λ_{1}[A] / λ_{2}[A] =  1.208 29

Reciprocity  y =  0.544 232

Nonbipartivity  b_{A} =  0.172 382

Normalized nonbipartivity  b_{N} =  0.014 608 0

Spectral bipartite frustration  b_{K} =  0.000 784 644

Controllability  C =  12,636

Relative controllability  C_{r} =  0.430 000

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
