CiaoDVD movie ratings
This is the bipartite user–movie rating network of the site
http://dvd.ciao.co.uk/ from 2013. The dataset contains 303 instances of
multiple edges. The timestamps are only precise up to one day.
Metadata
Statistics
Size  n =  33,736

Left size  n_{1} =  17,615

Right size  n_{2} =  16,121

Volume  m =  72,665

Unique edge count  m̿ =  72,345

Wedge count  s =  4,896,641

Claw count  z =  714,761,874

Cross count  x =  130,769,246,563

Square count  q =  610,909

4Tour count  T_{4} =  24,620,422

Maximum degree  d_{max} =  1,106

Maximum left degree  d_{1max} =  1,106

Maximum right degree  d_{2max} =  433

Average degree  d =  4.307 86

Average left degree  d_{1} =  4.125 18

Average right degree  d_{2} =  4.507 47

Fill  p =  0.000 254 762

Average edge multiplicity  m̃ =  1.004 42

Size of LCC  N =  32,135

Diameter  δ =  19

50Percentile effective diameter  δ_{0.5} =  4.455 73

90Percentile effective diameter  δ_{0.9} =  5.942 69

Median distance  δ_{M} =  5

Mean distance  δ_{m} =  5.000 04

Gini coefficient  G =  0.611 394

Balanced inequality ratio  P =  0.266 024

Left balanced inequality ratio  P_{1} =  0.239 160

Right balanced inequality ratio  P_{2} =  0.238 897

Relative edge distribution entropy  H_{er} =  0.884 257

Power law exponent  γ =  2.500 71

Tail power law exponent  γ_{t} =  2.541 00

Tail power law exponent with p  γ_{3} =  2.541 00

pvalue  p =  0.420 000

Left tail power law exponent with p  γ_{3,1} =  2.271 00

Left pvalue  p_{1} =  0.865 000

Right tail power law exponent with p  γ_{3,2} =  1.851 00

Right pvalue  p_{2} =  0.000 00

Degree assortativity  ρ =  −0.169 306

Degree assortativity pvalue  p_{ρ} =  0.000 00

Spectral norm  α =  33.296 7

Algebraic connectivity  a =  9.868 54 × 10^{−5}

Spectral separation  λ_{1}[A] / λ_{2}[A] =  1.341 77

Negativity  ζ =  0.422 172

Algebraic conflict  ξ =  0.018 375 1

Spectral signed frustration  φ =  0.001 033 49

Controllability  C =  18,998

Relative controllability  C_{r} =  0.563 137

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Guobing Guo, Jie Zhang, Daniel Thalmann, and Neil YorkeSmith.
ETAF: An extended trust antecedents framework for trust prediction.
In Proc. Int. Conf. Adv. in Soc. Netw. Anal. and Min., pages
540–547, 2014.
