UC Irvine forum
This bipartite network contains user posts to forums. The users are students at
the University of California, Irvine. An edge represents a forum message.
Metadata
Statistics
Size  n =  1,421

Left size  n_{1} =  899

Right size  n_{2} =  522

Volume  m =  33,720

Unique edge count  m̿ =  7,089

Wedge count  s =  174,069

Claw count  z =  2,807,597

Cross count  x =  50,117,282

Square count  q =  76,095

4Tour count  T_{4} =  1,322,222

Maximum degree  d_{max} =  1,792

Maximum left degree  d_{1max} =  1,792

Maximum right degree  d_{2max} =  942

Average degree  d =  47.459 5

Average left degree  d_{1} =  37.508 3

Average right degree  d_{2} =  64.597 7

Fill  p =  0.015 106 2

Average edge multiplicity  m̃ =  4.756 67

Size of LCC  N =  1,417

Diameter  δ =  8

50Percentile effective diameter  δ_{0.5} =  3.126 95

90Percentile effective diameter  δ_{0.9} =  4.402 38

Median distance  δ_{M} =  4

Mean distance  δ_{m} =  3.605 28

Gini coefficient  G =  0.681 900

Balanced inequality ratio  P =  0.242 067

Left balanced inequality ratio  P_{1} =  0.209 342

Right balanced inequality ratio  P_{2} =  0.264 116

Relative edge distribution entropy  H_{er} =  0.926 953

Power law exponent  γ =  1.584 63

Tail power law exponent  γ_{t} =  3.301 00

Tail power law exponent with p  γ_{3} =  3.301 00

pvalue  p =  0.404 000

Left tail power law exponent with p  γ_{3,1} =  3.851 00

Left pvalue  p_{1} =  0.938 000

Right tail power law exponent with p  γ_{3,2} =  3.031 00

Right pvalue  p_{2} =  0.224 000

Degree assortativity  ρ =  −0.092 975 0

Degree assortativity pvalue  p_{ρ} =  4.372 55 × 10^{−15}

Spectral norm  α =  370.755

Algebraic connectivity  a =  0.375 203

Spectral separation  λ_{1}[A] / λ_{2}[A] =  1.583 30

Controllability  C =  387

Relative controllability  C_{r} =  0.272 343

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Tore Opsahl and Pietro Panzarasa.
Triadic closure in twomode networks: Redefining the global and local
clustering coefficients.
Soc. Netw., 34, 2011.
