Amazon (Wang)
This is the rating network from Amazon, where users rate individual items.
Metadata
Statistics
Size | n = | 26,911
|
Left size | n1 = | 26,112
|
Right size | n2 = | 799
|
Volume | m = | 29,062
|
Unique edge count | m̿ = | 28,901
|
Wedge count | s = | 3,466,223
|
Claw count | z = | 506,135,573
|
Cross count | x = | 69,876,374,335
|
Square count | q = | 3,575
|
4-Tour count | T4 = | 13,952,650
|
Maximum degree | dmax = | 812
|
Maximum left degree | d1max = | 44
|
Maximum right degree | d2max = | 812
|
Average degree | d = | 2.159 86
|
Average left degree | d1 = | 1.112 97
|
Average right degree | d2 = | 36.373 0
|
Fill | p = | 0.001 385 24
|
Average edge multiplicity | m̃ = | 1.005 57
|
Size of LCC | N = | 25,865
|
Diameter | δ = | 18
|
50-Percentile effective diameter | δ0.5 = | 5.321 60
|
90-Percentile effective diameter | δ0.9 = | 7.354 18
|
Median distance | δM = | 6
|
Mean distance | δm = | 5.679 07
|
Gini coefficient | G = | 0.540 336
|
Balanced inequality ratio | P = | 0.309 436
|
Left balanced inequality ratio | P1 = | 0.474 309
|
Right balanced inequality ratio | P2 = | 0.187 156
|
Relative edge distribution entropy | Her = | 0.828 447
|
Power law exponent | γ = | 9.291 60
|
Tail power law exponent | γt = | 3.311 00
|
Tail power law exponent with p | γ3 = | 3.311 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 4.081 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 1.811 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.039 696 6
|
Degree assortativity p-value | pρ = | 1.469 29 × 10−11
|
Spectral norm | α = | 38.540 8
|
Algebraic connectivity | a = | 0.000 958 870
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.346 72
|
Negativity | ζ = | 0.368 257
|
Algebraic conflict | ξ = | 0.012 657 3
|
Spectral signed frustration | φ = | 0.001 456 17
|
Controllability | C = | 25,349
|
Relative controllability | Cr = | 0.941 957
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Hongning Wang, Yue Lu, and Chengxiang Zhai.
Latent aspect rating analysis on review text data: A rating
regression approach.
In Proc. Int. Conf. on Knowl. Discov. and Data Min., pages
783–792, 2010.
|
[3]
|
Hongning Wang, Yue Lu, and ChengXiang Zhai.
Latent aspect rating analysis without aspect keyword supervision.
In Proc. Int. Conf. on Knowl. Discov. and Data Min., pages
618–626, 2011.
|